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In the history of AI/pattern recognition, ad-hoc 
engineered methods have often worked better 
initially, before enough data and compute 
power was available to rely increasingly on ML.
It happened in OCR, ASR, CV, MT, NLP, and now 
in robotics

- Yann LeCun (Twitter, ca. 2021)
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Engineering vs. Science? 
● “Traditional” pipeline: 

○ Scientists do the science
○ Engineers make something work from the science

● Science informs engineering, can 
engineering inform science as well?

● Synergistic feedback loop
○ Science → Engineering → Better Science → etc.

● Many interesting scientific problems are 
grounded in engineering
○ Today we’ll talk about compression, but there are 

many more
● General ML based methods are important 

and interesting!
○ But they’re not what I study and that’s ok!
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The First Principles Approach to Science
● When working with an engineering motivated problem

○ Like compression related problems
● There were myriad engineering decisions that influence the design

○ We call these decisions the “First Principles” of the problem
● We take these first principles into account when developing new 

algorithms
○ These algorithms are customized to the specific problem
○ But what we lose in generality we make up for in results

4
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The Internet
● The internet is unprecedented

○ Entertainment medium
○ Repository of human knowledge

● Approximately a quarter of Americans do not 
have a broadband connection
○ Hits rural, less educated, and minorities the worst
○ Many rural areas use metered connections
○ Problem not restricted to America

● Society as a whole benefits from maximal 
participation in the internet

Graph credit: Pew Research 5

https://www.pewresearch.org/internet/fact-sheet/internet-broadband/?menuItem=3109350c-8dba-4b7f-ad52-a3e976ab8c8f
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Multimedia
● Internet has coalesced around 

images and videos
○ Most popular sites are centered 

around image/video sharing
○ Huge growth since 2012

● Video is growing particularly fast
○ 78% of people watch videos online 

every week, 55% every day
○ Projected: 82% of consumer 

internet traffic will come from videos 
by 2022

6

Source: https://breadnbeyond.com/video-marketing/video-marketing-strategies-statistics/



Copyright © 2022 Max Ehrlich

Multimedia Compression
● Lack of broadband often precludes sharing and viewing of multimedia, 

something which is increasingly prerequisite to modern internet use
○ Metered connections make this even harder

● Almost all multimedia are compressed to help with this
○ JPEG (among others) for images
○ MPEG/AOM for videos (most common is H.264)

● H.264 covers around 91% of all videos as of 2019 [1]
○ Was first released in 2003 (19 years old)
○ H265, AV1, etc do better but aren’t common

● Global Pandemic
○ School and work are online!

1. "Video Developer Report 2019". Bitmovin. September 2019. 7

https://go.bitmovin.com/video-developer-report-2019
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Deep Learning and Multimedia Compression
● Deep learning has 

revolutionized computer 
vision 
○ Compression is no exception

● Example: “HiFiC” [1]
● So why aren’t we using this?

○ Video and image codecs are 
entrenched in complex 
pipelines

○ Codec development is slow 
and deliberative
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1. Mentzer, Fabian, et al. "High-Fidelity Generative Image Compression." NeurIPS. 2020.

HiFiC: 0.082bpp JPEG: 0.087bpp
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My Dissertation
● Instead of trying to replace classical codecs with deep learning, let’s 

work with them
● Big advantage: can be used in real applications in the near-term

○ Only depending on classical compression means no special software 
● So many great problems to solve:

○ Compressed domain DL
○ Improve classical compression
○ Improve DL accuracy on compressed images

● In all cases: leverage what we know about compression to inform our 
science
○ The engineers that developed these compression standards are smart, their 

decisions should guide our decisions

9
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Deep Residual Learning in the JPEG Transform Domain
● JPEG decompression takes time, and 

JPEG data is sparse
● If convolutional networks could work on

 compressed JPEG data
○ We could leverage the sparsity
○ And avoid decompressing the image

● Goal of this work: reformulate residual networks such that they work on 
compressed JPEG data
○ Should be as close as possible to the spatial domain network

● Need to merge two mathematically disjoint theories
○ Deep learning with convolutions
○ JPEG compression, specifically the DCT

10Published in ICCV 2019
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Solution - First Principles
● Our formulation leverages the linearity of the JPEG transform

○ The linear parts of convolutional networks can either be composed with the JPEG 
transform to create a new linear map or reformulated directly

● Simplified ResNet
○ Some ResBlocks
○ Global average pooling
○ Fully connected layers

● Need to reformulate the following operations
○ Convolution - linear
○ Batch Norm - statistics of JPEG transform
○ Sum - linear
○ Global average pooling - statistics of JPEG transform
○ ReLU - Uh Oh!

● ReLU is piecewise linear, so we can’t compose it
○ So we use a novel approximation technique 

11
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Quick Overview of JPEG
Compression

1. Compute the DCT of 
non-overlapping 8 x 8 blocks

2. Divide the DCT coefficients by a 
quantization matrix and round them 
to integers

3. Vectorize the quantized coefficients 
putting high frequencies at the end

4. Run-length code and entropy code

Decompression

1. Undo entropy coding, run-length 
coding

2. Rearrange vectors into 8 x 8 blocks
3. Multiply coefficients by the 

quantization matrix
4. Inverse DCT

12
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Making it Linear: Definition of JPEG Transform Domain
Compression

1. Compute the DCT of 
non-overlapping 8 x 8 blocks

2. Divide the DCT coefficients by a 
quantization matrix and round them 
to integers

3. Vectorize the quantized coefficients 
putting high frequencies at the end

4. Run-length code and entropy code

Decompression

1. Undo entropy coding, run-length 
coding

2. Rearrange vectors into 8 x 8 blocks
3. Multiply coefficients by the 

quantization matrix
4. Inverse DCT

13
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Blockifying:

DCT: 

 

Zigzag: 

Quantization: Dequantization:  

JPEG Compression: 

JPEG Decompression:

JPEG Compression Tensors
Method of Brian Smith (1994) [1], 
can compute any linear function in 
JPEG domain

● Multi-channel batch of 
images/features: type (0, 4) 
Tensor

● Transform Coefficients

1. Smith, B. "Fast software processing of motion JPEG video." Proceedings of the second ACM international conference on 
Multimedia. 1994.

14
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Substitute:

Let:

Then:

Convolutions
NLS Method:
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Naive Steps:
1. Decompress

 
2. Convolve

3. Compress

Linear Maps:
1.

 
2.  

3.

●             is the compressed domain convolution
● This tensor encapsulates decompression, applying the 

convolution and recompression
● Easily extended to multi-channel convolutions
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Batch Norm and Global Average Pooling
Batch Norm

● Defined as
for learnable gamma and beta 

● We can use two properties of the DCT: 
○ the (0, 0) coefficient in each block 

is the mean of the block and the 
expectation of the coefficients is 
the variance of the block. 

○ This lets us extract the mean with 
a simple read operation and apply 
beta with a single addition

● To apply gamma and the variance, we 
use the linearity of JPEG

Global Average Pooling

● Represents each channel by the spatial 
mean

● As stated on the right, the mean is the 
(0,0) coefficient, so we simply read this 
off instead of computing something

16
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ReLU
● This is a big problem because it’s non-linear

○ So we can’t easily compose it with the JPEG linear maps
● Sometimes you can do fancy algebra to make non-linear functions work

○ But ReLU is a worst case since it is piecewise linear, you need to know the spatial domain 
value to apply the right piece

● Idea: partially decompress the block
● If we want to approximate a signal using a subset of the DCT coefficients, the 

best coefficients to use are the lowest frequency M coefficients
○ We can use this to implement a fast approximate ReLU by doing a partial decompress
○ Decompressing only a few frequencies does a good enough job without sacrificing 

performance

17
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Approximated Spatial Masking
● One potential problem

○ Although the lowest M frequencies approximate the 
original signal, all of the signal values could still be wrong

● ReLU zeros out negative pixels, it would be nice if 
the positive pixels were at least preserved

● So instead of using the ReLU of the approximation 
as our result, compute a mask from the 
approximation and then apply the mask to the 
untouched DCT coefficients

● New problem
○ We partially decompress to compute the mask, so the 

mask is in the pixel domain
○ But we need to multiply it by DCT coefficients or we’d 

have to decompress the block anyway!

18
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Applying a Pixel Mask to DCT Coefficients
NLS Method

19

Naive Steps:
1. Inverse DCT

2. Pixelwise multiply

3. DCT

Linear (or Bilinear) 
Maps
1.

2.

3.

Substitute

Let

Then
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Results
● Used a toy model with MNIST, CIFAR-10,100
● Examined ReLU error and throughput

○ Much higher throughput for inference
○ Slightly higher throughput for training

20

Throughput ReLU Accuracy 
Model Conversion

ReLU Accuracy 
Retraining
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Quantization Guided JPEG Artifact Correction
● Goal: Compress and image at low quality, design a neural network to 

restore the image
● Allows for low bandwidth transmission of the image while still looking 

presentable

21Published in ECCV 2020

● Three major issues with 
prior work that make this 
impractical
○ Prior work is quality 

specific
○ Prior work deals with 

grayscale images only
○ Prior work uses standard 

error based regression
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Solution - First Principles
Problems

● Quality dependent models
○ Impractical to train, quality not 

stored in JPEG

Solutions

● Use the quantization matrix (which is 
stored) as side data to a single network

22

● Grayscale only models
○ Grayscale model is easier to restore, 

but not applicable to color images

● Error based regression
○ Produces a blurry result

● Color channels are usually subsampled 
and quantized at lower quality. 
○ Restore grayscale channel first
○ Use restored grayscale channel to 

guide restoration of color 
channels

● Formulate a GAN loss which 
specifically restores texture
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Quantization Side Data
● We develop a technique called Convolutional 

Filter Manifolds an extension of Filter 
Manifolds [1]

● This is a general technique that uses a 
lightweight CNN to produce a convolutional 
filter for the network to apply to DCT 
coefficients

23

1. Kang, Di, Debarun Dhar, and Antoni B. Chan. "Crowd counting by adapting convolutional neural networks with side information." arXiv preprint 
arXiv:1611.06748 (2016).
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CFMs Do Cool Things (1)
Take a single CFM layer, generate the weight for a quality 10, 50, 100 
quantization matrix. Take three channels.  

24
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CFMs Do Cool Things (2)
● Now take all the quantization matrices, 0-100.
● Generate the weights and t-SNE to 2D. Then 

plot three channels with the color showing 
the quality integer that generated the weight. 

● Not only are the filters well separated in 
space, but they are ordered according to their 
quality

● They spiral inwards to a point in the center at 
quality 100 where they all aren’t doing much

● Circles are quantization matrices seen during 
training

25
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Grayscale Network
● We formulate coefficients-to-coefficients 

regression
○ This is important for using the quantization 

matrix because  it directly describes rounding 
applied to DCT coefficients not pixels

● This requires some tricks, we use both
○ BlockNet [1]: uses 8 by 8 stride-8 

convolutions to compute a representation of 
each DCT block

○ FrequencyNet [2]: rearranges the coefficients 
channel-wise and uses grouped convolutions 
to process frequencies in isolation 

26

1. Deguerre, Benjamin, Clément Chatelain, and Gilles Gasso. "Fast object detection in compressed jpeg images." 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019.
2. Lo, Shao-Yuan, and Hsueh-Ming Hang. "Exploring semantic segmentation on the DCT representation." Proceedings of the ACM Multimedia Asia. 2019. 1-6.

BlockNet FrequencyNet

Full 
Y-Network
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Color Network
● Color images are usually chroma 

subsampled and compressed at lower 
quality

● This destroys much of the structure in 
the images

● Use the restored grayscale channel to 
provide that structure

● Includes a learned upsampling layer to 
undo the subsampling

27
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GAN Texture Loss
● Regression alone produces a blurry result, so we introduce a GAN loss 

designed to restore texture
● Full GAN loss (given network output x and ground truth y)

● Texture term uses a VGG network trained on the MINC materials dataset 
instead of an imagenet VGG perceptual loss
○ If the networks produce similar activations, they would be classified as the same 

material and therefore have similar texture

28
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Numeric Results

29

Ours vs. Prior Work* Ours Over Wide Quality Range

*See paper for citations
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Analyzing and Mitigating JPEG Compression Defects in Deep Learning

● We talked about restoration for human consumption, 
what about machine consumption?
○ As deep models are increasingly deployed in consumer 

settings, they increasingly encounter compressed data
○ Academic datasets are lightly compressed, if at all

● How do deep models cope with this quality loss?
○ Do the lose performance on JPEG inputs?
○ Can anything be done to mitigate the performance loss?
○ We conducted a large scale study to answer these questions

● Best way to mitigate depends on the task
○ Global tasks (classification) do better with simple fine-tuning
○ Localization tasks (segmentation) do better with 

task-targeted artifact correction

34Published in ICCV Workshop (MELEX)
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Task-Targeted Artifact Correction
● Use loss from a downstream task 

network to fine-tune an artifact 
correction network

● This allows the AC network to focus 
on artifacts that degrade the 
prediction of the task network

● Completely self-supervised, no labels 
required to train (only uses logits)

● Supports transfer where an AC 
network trained for one task is used 
for another one

● Supports multihead where multiple 
task networks are used for training

35
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Transfer and Multihead

36

Transfer

Multihead

Resnet-101 FasterRCNN HRNetV2 + C1

Resnet-50 FasterRCNN HRNetV2 + C1
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MetaBit
● DL for Video Compression is making progress 

○ Latest work from Wave 1 can (sort of) match AV1 for 
rate-distortion, but significantly slower

○ Not going to be competitive/consumer ready any 
time soon

● How do we get DL into video compression in 
the near term?
○ Keep H.264 around!

● Brings big advantages
○ People without GPUs can view the resulting stream 

(it’s just H.264)
○ Encode time: 60+fps on a CPU (i.e., no DL 

required…)
○ Decode time: faster than many DL codecs (could be 

real-time with some elbow grease)
○ Rate-distortion: better than many DL codecs (could 

be better with more training)
○ Add a GAN loss: looks amazing (but temporal 

consistency issues)

Under Submission 37
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Not Quite a New Idea
● Prior work treated this as multiframe “image-to-image” regression
● Leveraged “standard procedures” from restoration tasks like 

super-resolution
○ Optical flow for alignment[1], or deformable convolutions [2]

● One unique idea: Peak Quality Frames [1]
○ Train a model to detect frames which are high quality, use those to guide restoration 

of the low quality frames

1. Yang, Ren, et al. "Multi-frame quality enhancement for compressed video." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
2. Deng, Jianing, et al. "Spatio-temporal deformable convolution for compressed video quality enhancement." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 07. 2020.

38
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How Does Video Compression Work?
● Entropy reduction in space (like JPEG) and time

○ I-Frames: (intra-frames) like a JPEG image, are decoded with no external information
○ P-Frames: (predicted frames) Require at least one prior frame to decode
○ GOP: (group of pictures) I-frame and its associated P-frames

● I-frames are straightforward, what about P-Frames?
○ Motion Vectors: block based heuristic motion estimation
○ Error residuals: everything that can’t be modeled by the motion vectors (i.e., compute estimated 

frame from motion vectors, store difference (residual) between true and predicted)

39
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We Can Use This Knowledge! - First Principles!
● Motion vectors: coarse motion estimation

○ Don’t need optical flow
● I-Frames: Are necessarily stored at higher quality

○ Don’t need to search for PQFs
● Our Network

○ Reads motion vectors and aligns feature maps (Fast!)
○ Use I-Frame restorations to restore P-frames (Accurate!)
○ Reads GOP structure to restore blocks of frames (Fast!)

● We saved parameters by not needing optical flow/PQF detection
○ So re-invest those parameters in the restoration network (Even more accurate!)

● Plus some fun loss formulations

40
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Phase 1 - Do A Really Good Job on the I Frame

41
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Phase 2 - Use the Really Good I Frame To Restore the P Frame

42
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Fun with Loss Functions!
● Compression specifically targets high frequency details

○ But: traditional regression loss functions encourage “averaging” which implicitly 
prioritizes low frequencies

○ Force the network to weight frequency bands equally using a difference-of-gaussians 
scale-space loss 

○ Given            gaussian kernel with std. dev sigma and        as the network output 
downsampled by a factor of s

Compute Filtered Images Compute DoG

● Final Loss Function:

43
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Fun with Loss Functions! Part 2 
● Regression losses are great for numerical results, not so much for 

looking at
● Add a GAN and texture loss to make the images look great
● Wasserstein GAN, critic augmented with temporal consistency 

(TeCoGAN [1])
● Texture loss from my JPEG work

Regression Loss (numerical results) GAN Loss (qual. results)

44

1. Chu, Mengyu, et al. "Temporally coherent gans for video super-resolution (tecogan)." arXiv preprint arXiv:1811.09393 1.2 (2018)
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Quantitative Results

45
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Comparison to DL Compression
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Recap
● Compression is important, it powers the modern 

internet, and allows more people to participate
● Deep learning can help produce smaller 

images/videos
○ But we’re a long way off from practical compression 

powered solely by deep learning
● By working with classical compression, we can 

realize improved compression in the near term
○ And solve some fun related problems

● The Future
○ Faster, better algorithms
○ New problems (data security, better frequency aware 

models, etc.)
○ Consumer applications?
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